NaturalPoint Help Center

Knowledgebase > OptiTrack >

Transform World-Space Coordinates to Local Rigid Body
Coordinates
NaturalPoint Support - 2015-07-22 - Comments (0) - OptiTrack

(=]

The API reports "world-space" values for markers and rigid body objects at
each frame. It is often desirable to convert the coordinates of points
reported by the API from the world-space (or global) coordinates into the
local space of the rigid body. This is useful, for example, if you have a rigid
body that defines the world space that you want to track markers within.

Rotation values are reported as both quaternions, and as roll, pitch, and yaw
angles (in degrees). Quaternions are a four-dimensional rotation
representation that provide greater mathematical robustness by avoiding
"gimbal" points that may be encountered when using roll, pitch, and yaw
(also known as Euler angles). However, quaternions are also more
mathematically complex and are more difficult to visualize, which is why
many still prefer to use Euler angles.

There are many potential combinations of Euler angles so it is important to
understand the order in which rotations are applied, the handedness of the
coordinate system, and the axis (positive or negative) that each rotation is
applied about.

These are the conventions used in the API for Euler angles:

« Rotation order: XYZ

e All coordinates are *right-handed*
Pitch is degrees about the X axis
Yaw is degrees about the Y axis
Roll is degrees about the Z axis
Position values are in millimeters

To create a transform matrix that converts from world coordinates into the
local coordinate system of your chosen rigid body, you will first want to

https://help.naturalpoint.com/kb
https://help.naturalpoint.com/kb/optitrack
https://help.naturalpoint.com/kb/articles/transform-world-space-coordinates-to-local-rigid-body-coordinates
https://help.naturalpoint.com/kb/articles/transform-world-space-coordinates-to-local-rigid-body-coordinates
https://help.naturalpoint.com/kb/optitrack

compose the local-to-world transform matrix of the rigid body, then invert it
to create a world-to-local transform matrix.

To compose the rigid body local-to-world transform matrix from values
reported by the API, you can first compose a rotation matrix from the
quaternion rotation value or from the yaw, pitch, and roll angles, then inject
the rigid body translation values.

Transform matrices can be defined as either "column-major" or "row-major".
In a column-major transform matrix, the translation values appear in the
right-most column of the 4x4 transform matrix. For purposes of this article,
column-major transform matrices will be used. It is beyond the scope of this
article, but it is just as feasible to use row-major matrices by transposing
matrices.

In general, given a world transform matrix of the form:

M =

[1 Tx]
[R 1 Tyl
[1 Tz]
[0 0 0 1]

where Tx, Tz, Tz are the world-space position of the origin (of the rigid body,
as reported from the API), and R is a 3x3 rotation matrix composed as:

R = [Rx (Pitch) 1 * [Ry (Yaw)] * [Rz (Roll)]

where Rx, Ry, and Rz are 3x3 rotation matrices composed according to:

1 0 o0
0 cosp —sing 0
|0 sing cosp O
0 0 01

[cosd 0 sind O
o 1 0 o
- singd 0 cosd O
oo 0 1

cogp —sitp
git1 Cos

Rl'rur = lg:l lp
0 0

0 0

=0 = O O
= o O O

A handy trick to know about local-to-world transform matrices is that once
the matrix is composed, it can be validated by examining each column in
the matrix. The first three rows of Column 1 are the (normalized) XYZ
direction vector of the world-space X axis, column 2 holds the Y axis, and
column 3 is the Z axis. Column 4, as noted previously, is the location of the
world-space origin.

To convert a point from world coordinates (coordinates reported by the API
for a 3D point anywhere in space), you need a matrix that converts from
world space to local space. We have a local-to-world matrix (where the local
coordinates are defined as the coordinate system of the rigid body used to
compose the transform matrix), so inverting that matrix will yield a world-to-
local transformation matrix.

Inversion of a general 4x4 matrix can be slightly complex and may result in
singularities, however we are dealing with a special transform matrix that
only contains rotations and a translation. Because of that, we can take
advantage of the method shown here to easily invert the matrix:

http://stackoverflow.com/questions/2624422/efficient-4x4-matrix-inverse-affine-transform

Once the world matrix is converted, multiplying it by the coordinates of a
world-space point will yield a point in the local space of the rigid body. Any
number of points can be multiplied by this inverted matrix to transform
them from world (API) coordinates to local (rigid body) coordinates.

The APl includes a sample (markers.sIin/markers.cpp) that demonstrates this
exact usage.

http://stackoverflow.com/questions/2624422/efficient-4x4-matrix-inverse-affine-transform

